

Sampling & populations

- Sample proportions
- Sampling distribution small populations
- Sampling distribution large populations
- Sampling distribution normal distribution approximation
- Mean & variance of a sample proportion
- Sampling distribution comparing approximations
- Mean & variance of the sample proportion
- Confidence intervals
- Margin of error

Sample proportions

- A sample of size n is taken from a population.
- The number of positive outcomes in the sample is recorded to find the sample proportion.
- The population proportion can be estimated from the sample proportion.
- The sample proportions \hat{p} are the values of the random variable \hat{P} .

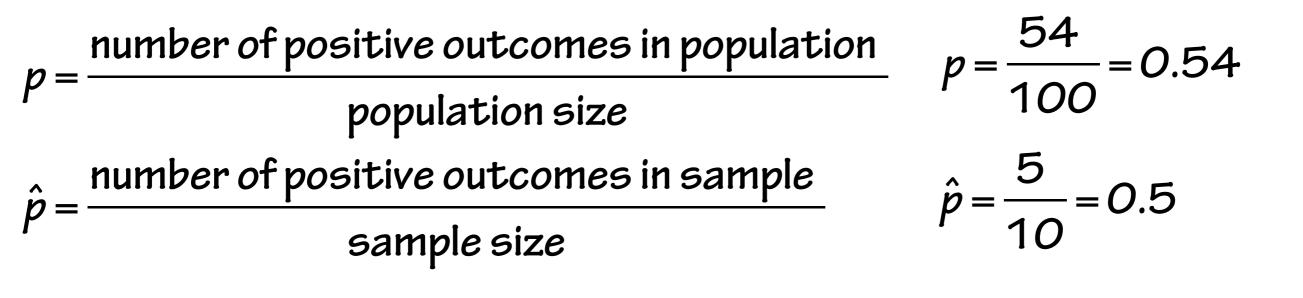
$$p = \frac{\text{number of positive outcomes in population}}{\text{population size}} \quad (A \text{ population statistic.})$$

$$\hat{p} = \frac{\text{number of positive outcomes in sample}}{\text{sample size}} \quad (A \text{ sample statistic.})$$

$$\hat{P} = \text{The set of possible outcomes of } \hat{p}.$$

Sample proportions

(Black is the positive outcome here)



 $\hat{P} = \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$

Sampling distribution - small populations

- If a population is small, then the probability of a selection changes depending on the previous selections. (Conditional probability.)
- For example, a group of 5 students is to be randomly selected from 12 boys and 10 girls.
- What is the sampling distribution for the proportion of boys selected?

$$Pr(X = x) = \frac{{}^{D}C_{x} {}^{N-D}C_{n-x}}{{}^{N}C_{n}}$$

$$Pr(X = 2) = \frac{{}^{12}C_{2} \times {}^{10}C_{3}}{{}^{22}C_{5}}$$

$$Pr(X = 2) = 0.3008$$

$$Pr(\hat{P} = 0.4) = 0.3008$$

This is known as a hypergeometric distribution.

$Pr(\hat{P}=O)$	=0.0096
$Pr(\hat{P}=0.2)$	=0.0957
$Pr(\hat{P}=0.4)$	=0.3008
$Pr(\hat{P}=0.6)$	=0.3759
$Pr(\hat{P}=0.8)$	=0.1880
$Pr(\hat{P}=1)$	=0.0300

Sampling distribution - large populations

- If a population is sufficiently large, the probability of selection remains constant. (Independent probability.)
- For example, a group of 5 students is to be randomly selected from a large population at the school. (1000+ students, where 6/11 of the students are boys and 5/11 girls.)

$$Pr(X = x) = {}^{n}C_{x} \times (p)^{x} \times (1-p)^{n-x}$$

$$Pr(X = 2) = {}^{5}C_{2} \times \left(\frac{6}{11}\right)^{2} \times \left(\frac{5}{11}\right)^{3}$$

$$Pr(X = 2) = 0.2794$$

$$Pr(\hat{P} = 0.4) = 0.2794$$

This is known as a binomial distribution.

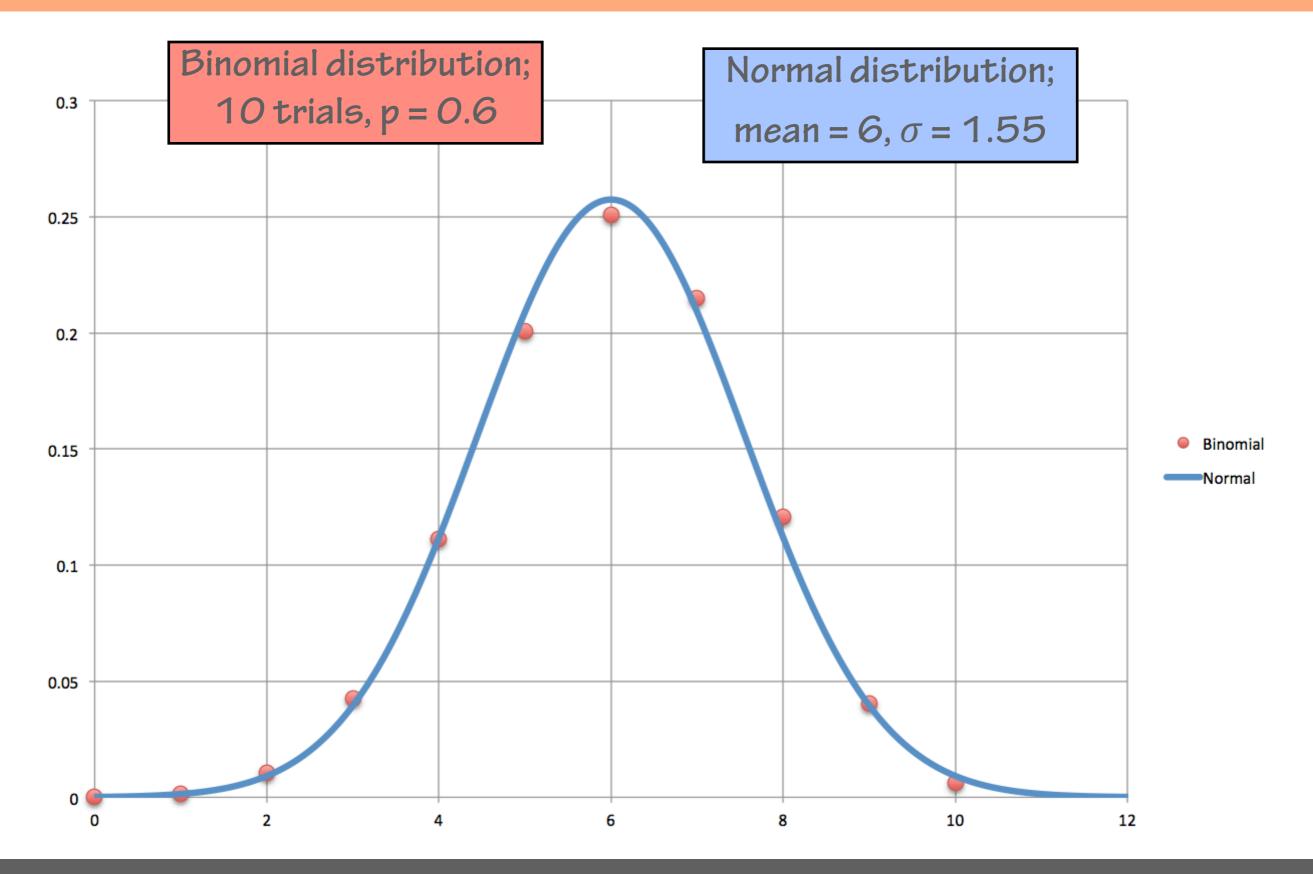
$Pr(\hat{P}=O)$	=0.0194
$Pr(\hat{P}=0.2)$	=0.1164
$Pr(\hat{P}=0.4)$	=0.2794
$Pr(\hat{P}=0.6)$	=0.3353
$Pr(\hat{P}=0.8)$	=0.2012
$Pr(\hat{P}=1)$	=0.0483

Sampling distribution - normal distribution approximation

- If a population is sufficiently large and the value of p is not too far from O.5, the binomial distribution can be approximated by a normal distribution
- The binomial mean and standard deviation can be used with a normal distribution.
- For a binomial distribution:

$$\mu = E(X) = np \qquad sd = \sqrt{np(1-p)}$$

Sampling distribution - normal distribution approximation



Mean & variance of a sample proportion

• If a sample of n is taken from a population with a proportion p:

Var(X) = np(1-p) (Binomial Variance) E(X) = np(Binomial Mean) $Var(\hat{P}) = Var\left(\frac{X}{n}\right)$ $E(\hat{P}) = E\left(\frac{X}{n}\right)$ $Var(\hat{P}) = \frac{1}{n^2} Var(x)$ $E(\hat{P}) = p$ $Var(\hat{P}) = \frac{p(1-p)}{n}$ The expected value of the $E(\hat{P}) = p$ sample distribution is: $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$ The standard deviation of the sample distribution is:

Sampling distribution - comparing approximations

- 60% of people in a town are overweight. If a group of 100 people was to be randomly selected for a health survey, what is the probability that less than 55% of those surveyed are overweight?
- Binomial distribution: $Pr(\hat{p} < 0.55)$

 $\Pr(O < x < 54)$

 $\mu = E(\hat{p}) = 0.6$

binomCdf(100,0.6,0,54) =0.1311

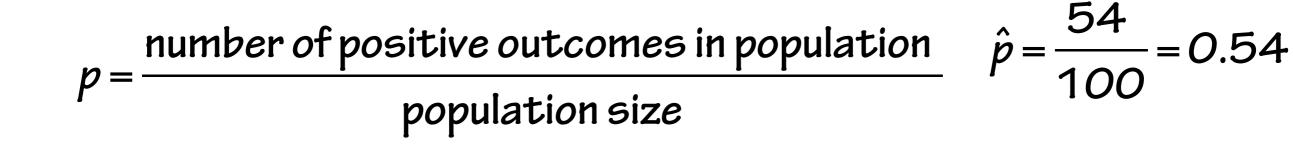
• Normal distribution:

$$\sigma = \sqrt{\frac{0.6 \times 0.4}{100}} = 0.0490$$

normCdf($-\infty$,0.55,0.6,0.0490)=0.1537

Sample proportions

\bigcap ()(() () () ()() () \bigcirc ()()() (



Mean & variance of the sample proportion

- As the sample size increases, the binomial distribution approaches a normal distribution.
- From the previous example:

Expected value =
$$E(\hat{P}) = p$$

 $E(\hat{P}) = 0.54$

Standard deivation =
$$\sqrt{\frac{p(1-p)}{n}}$$

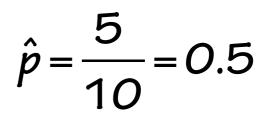
 $sd = \sqrt{\frac{0.54 \times 0.46}{10}}$

We can expect with around 68% certainty that the sample proportion will be within one standard deviation of the population proportion. $(0.37 < \hat{p} < 0.71)$ We can expect with around 95% certainty that the sample proportion will be within two standard deviations of the sample proportion.

$$(0.20 < \hat{p} < 0.88)$$

number of positive outcomes in sample

sample size



What is the uncertainty of any estimates of the population proportion p? What sample size is needed to be confident of correctly estimating p?

p

Confidence intervals

• Actually the point estimate of the sample proportion was 0.5.

 $\hat{p} = 0.5$

We can expect with about 68%certainty that the population proportion is within one standard deviation of the sample proportion. (0.34

$$sd = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$sd = \sqrt{\frac{0.5 \times 0.5}{10}}$$

sd=0.16

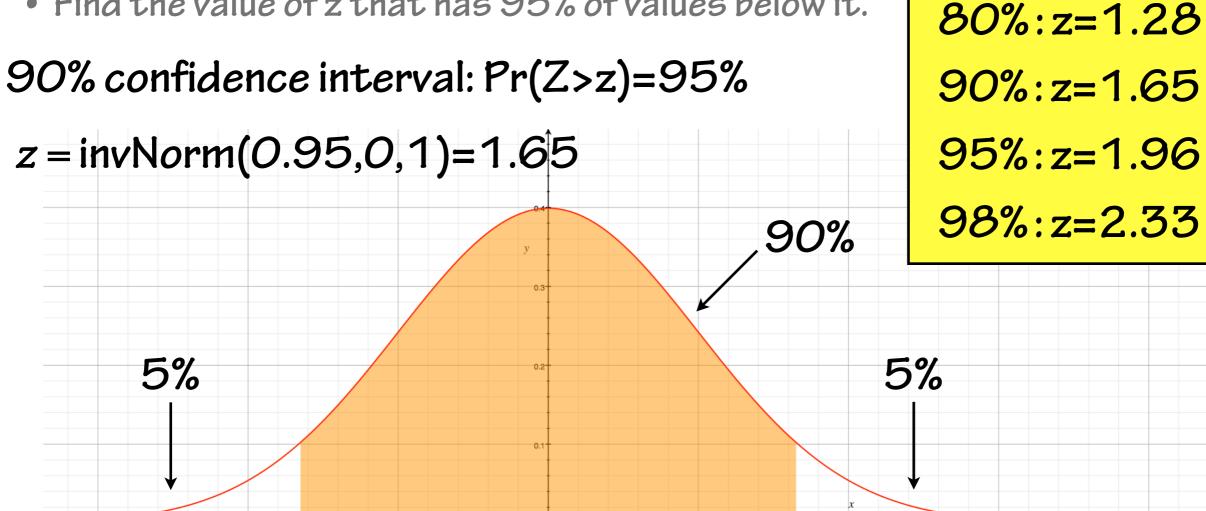
We can expect with about 95% certainty that the population proportion is within two standard deviations of the sample proportion. (0.18 < p < 0.82)

Margin of error

- The distance between the sample estimate and the end-points of the confidence interval is called the margin of error.
- To reduce the margin of error, the sample size needs to be increased.
- From a sample of 10, the margin of error at 95% confidence was ~0.32.
- To half the margin of error, the sample size should be four times greater.

Margin of error:
$$M \approx 2\sqrt{\frac{0.5 \times 0.5}{40}} \approx 0.16$$

- The multiplier of the standard deviation needs to be found from the inverse normal distribution.
- For a 90% confidence:
- Find the value of z that has 95% of values below it.



z=1.65

- A survey is to be taken of voters to find the proportion that have not yet decided on who they are voting for.
- How many people need to be surveyed for a 2% or 5% margin of error in the results with 95% confidence?
- Firstly, the sample proportion \hat{p} must be estimated from prior data or a quick survey.

Assume that \hat{p} is around 0.35 from preliminary data

$$0.02 = 1.96 \sqrt{\frac{0.35 \times 0.65}{n}} \qquad \left(\frac{0.02}{1.96}\right)^2 = \frac{0.35 \times 0.65}{n}$$

$$n == \frac{0.35 \times 0.65}{\left(\frac{0.02}{1.96}\right)^2}$$

n = 2185 (for 2% margin of error) n = 350 (for 5% margin of error)

