

Sampling \& populations

- Sample proportions
- Sampling distribution - small populations
- Sampling distribution - large populations
- Sampling distribution - normal distribution approximation
- Mean \& variance of a sample proportion
- Sampling distribution - comparing approximations
- Mean \& variance of the sample proportion
- Confidence intervals
- Margin of error

Sample proportions

- A sample of size n is taken from a population.
- The number of positive outcomes in the sample is recorded to find the sample proportion.
- The population proportion can be estimated from the sample proportion.
- The sample proportions \hat{p} are the values of the random variable \hat{P}.
$p=\frac{\text { number of positive outcomes in population }}{\text { population size }}$ (A population statistic.)
$\hat{p}=\frac{\text { number of positive outcomes in sample }}{\text { sample size }}$ (A sample statistic.)
$\hat{P}=$ The set of possible outcomes of \hat{p}.

Sample proportions

(Black is the positive outcome here)

$p=\frac{\text { number of positive outcomes in population }}{\text { population size }} \quad p=\frac{54}{100}=0.54$
$\hat{p}=\frac{\text { number of positive outcomes in sample }}{\text { sample size }} \quad \hat{p}=\frac{5}{10}=0.5$
$\hat{P}=\{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1\}$

Sampling distribution - small populations

- If a population is small, then the probability of a selection changes depending on the previous selections. (Conditional probability.)
- For example, a group of 5 students is to be randomly selected from 12 boys and 10 girls.
-What is the sampling distribution for the proportion of boys selected?

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\frac{{ }^{0} C_{x} C^{N-1} C_{n-x}}{{ }^{N} C_{n}} \\
& \operatorname{Pr}(X=2)=\frac{C^{12} C_{2} \times 10 C_{3}}{{ }^{2} C_{5}} \\
& \operatorname{Pr}(X=2)=0.3008 \\
& \operatorname{Pr}(\hat{P}=0.4)=0.3008
\end{aligned}
$$

This is known as a hypergeometric distribution.

$\operatorname{Pr}(\hat{P}=0)$	$=0.0096$
$\operatorname{Pr}(\hat{P}=0.2)$	$=0.0957$
$\operatorname{Pr}(\hat{P}=0.4)$	$=0.3008$
$\operatorname{Pr}(\hat{P}=0.6)$	$=0.3759$
$\operatorname{Pr}(\hat{P}=0.8)$	$=0.1880$
$\operatorname{Pr}(\hat{P}=1)$	$=0.0300$

Sampling distribution - large populations

- If a population is sufficiently large, the probability of selection remains constant. (Independent probability.)
- For example, a group of 5 students is to be randomly selected from a large population at the school. (1000+ students, where 6/11 of the students are boys and 5/11 girls.)
$\operatorname{Pr}(X=x)={ }^{n} C_{x} \times(p)^{x} \times(1-p)^{n-x}$
$\operatorname{Pr}(X=2)={ }^{5} C_{2} \times\left(\frac{6}{11}\right)^{2} \times\left(\frac{5}{11}\right)^{3}$
$\operatorname{Pr}(X=2)=0.2794$
$\operatorname{Pr}(\hat{P}=0.4)=0.2794$
This is known as a binomial distribution.

$\operatorname{Pr}(\hat{P}=0)$	$=0.0194$
$\operatorname{Pr}(\hat{P}=0.2)$	$=0.1164$
$\operatorname{Pr}(\hat{P}=0.4)$	$=0.2794$
$\operatorname{Pr}(\hat{P}=0.6)$	$=0.3353$
$\operatorname{Pr}(\hat{P}=0.8)$	$=0.2012$
$\operatorname{Pr}(\hat{P}=1)$	$=0.0483$

Sampling distribution - normal distribution approximation

- If a population is sufficiently large and the value of p is not too far from 0.5 , the binomial distribution can be approximated by a normal distribution
- The binomial mean and standard deviation can be used with a normal distribution.
- For a binomial distribution:

$$
\mu=E(X)=n p \quad s d=\sqrt{n p(1-p)}
$$

Sampling distribution - normal distribution approximation

Mean \& variance of a sample proportion

- If a sample of n is taken from a population with a proportion p :

$$
\operatorname{Var}(X)=n p(1-p) \quad(\text { Binomial Variance })
$$

$$
\begin{aligned}
& E(X)=n p \quad \text { (Binomial Mean) } \\
& E(\hat{P})=E\left(\frac{X}{n}\right) \\
& E(\hat{P})=p
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}(\hat{P})=\operatorname{Var}\left(\frac{X}{n}\right) \\
& \operatorname{Var}(\hat{P})=\frac{1}{n^{2}} \operatorname{Var}(x) \\
& \operatorname{Var}(\hat{P})=\frac{p(1-p)}{n}
\end{aligned}
$$

The expected value of the

$$
E(\hat{P})=p
$$

sample distribution is:

$$
s d(\hat{P})=\sqrt{\frac{p(1-p)}{n}}
$$

Sampling distribution - comparing approximations

- 60% of people in a town are overweight. If a group of 100 people was to be randomly selected for a health survey, what is the probability that less than 55% of those surveyed are overweight?
- Binomial distribution: $\operatorname{Pr}(\hat{p}<0.55)$

$$
\operatorname{Pr}(0<x<54)
$$

binomCdf(100,0.6,0,54) $=0.1311$

- Normal distribution:

$$
\begin{aligned}
& \mu=E(\hat{p})=0.6 \\
& \sigma=\sqrt{\frac{0.6 \times 0.4}{100}}=0.0490 \\
& \text { normCdf }(-\infty, 0.55,0.6,0.0490)=0.1537
\end{aligned}
$$

$p=\frac{\text { number of positive outcomes in population }}{\text { population size }} \hat{p}=\frac{54}{100}=0.54$

Mean \& variance of the sample proportion

- As the sample size increases, the binomial distribution approaches a normal distribution.

$$
\begin{array}{ll}
\text { From the previous example: } & \text { Standard deivation }=\sqrt{\frac{p(1-p)}{n}} \\
\text { Expected value }=E(\hat{P})=p & s d=\sqrt{\frac{0.54 \times 0.46}{10}} \\
E(\hat{P})=0.54 & s d=0.17
\end{array}
$$

We can expect with around 95\% certainty that the sample proportion will be within two standard deviations of the sample proportion.

$$
(0.37<\hat{p}<0.71)
$$

($0.20<\hat{p}<0.88$)

Sample proportions

$$
\hat{p}=\frac{\text { number of positive outcomes in sample }}{\text { sample size }} \quad \hat{p}=\frac{5}{10}=0.5
$$

What is the uncertainty of any estimates of the population proportion p ? What sample size is needed to be confident of correctly estimating p ?

Confidence intervals

- Actually the point estimate of the sample proportion was 0.5.

$$
\begin{aligned}
& s d=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& s d=\sqrt{\frac{0.5 \times 0.5}{10}}
\end{aligned}
$$

$$
s d=0.16
$$

We can expect with about 68\% certainty that the population proportion is within one standard deviation of the sample proportion. ($0.34<p<0.66$)

We can expect with about 95\%
certainty that the population proportion is within two standard deviations of the sample proportion.
($0.18<p<0.82$)

Margin of error

- The distance between the sample estimate and the end-points of the confidence interval is called the margin of error.
- To reduce the margin of error, the sample size needs to be increased.
- From a sample of 10 , the margin of error at 95% confidence was ~ 0.32.
- To half the margin of error, the sample size should be four times greater.

Margin of error: $M \approx 2 \sqrt{\frac{0.5 \times 0.5}{40}} \approx 0.16$

Margin of error

- The multiplier of the standard deviation needs to be found from the inverse normal distribution.
- For a 90\% confidence:
- Find the value of z that has 95% of values below it. 90\% confidence interval: $\operatorname{Pr}(Z>z)=95 \%$ $z=$ invNorm($0.95,0,1$) $=1.65$

$$
z=1.65
$$

Margin of error

- A survey is to be taken of voters to find the proportion that have not yet decided on who they are voting for.
- How many people need to be surveyed for a 2% or 5% margin of error in the results with 95% confidence?
- Firstly, the sample proportion \hat{p} must be estimated from prior data or a quick survey.

Assume that \hat{p} is around 0.35 from preliminary data
$0.02=1.96 \sqrt{\frac{0.35 \times 0.65}{n}} \quad\left(\frac{0.02}{1.96}\right)^{2}=\frac{0.35 \times 0.65}{n}$
$n==\frac{0.35 \times 0.65}{\left(\frac{0.02}{1.96}\right)^{2}}$
$n=2185$ (for 2\% margin of error)
$n=350$ (for 5\% margin of error)

