

- Gradient of lines
- Graphing linear equations
- Finding the equation of a line
- Perpendicular lines
- Distance between points
- Midpoint of a line

Gradient of lines

The gradient is the measure of how far up a line <u>rises</u>, as it it <u>runs</u> across.

The gradient of the line can be used to find the angle between the line and the axis.

• Negative gradient: use a negative angle (Clockwise, below the axis) or the supplementary angle (180° - θ)

Angles & gradients

Find the acute angle between the two lines:

Graphing equations - gradient form

Linear equations are defined by a gradient and y-intercept

Graphing equations - intercept form

• Linear equations can also be written in an intercept form.

$$\frac{x}{a} + \frac{y}{b} = 1$$
 $bx + ay = ab$

$$y = \frac{x}{2} - 4 \longrightarrow 4 = \frac{x}{2} - y \longrightarrow \frac{x}{8} - \frac{y}{4} = 1 \longrightarrow x - 2y = 8$$

x intercept: y = 0 y intercept: x = 0

Finding the equation of a line - two points

- To find the equation of a line, a point and a gradient are needed.
- If two points are given, the gradient must be found first.
- The rule $y y_1 = m(x x_1)$ is used to find the linear equation.

Gradient:

 $m = \frac{-2-2}{9-1} = \frac{-4}{8} = -\frac{1}{2}$

Equation:

$$y-2 = -\frac{1}{2}x + \frac{1}{2}$$

$$y = -\frac{1}{2}x + \left(\frac{1}{2} + 2\right)$$

Finding the equation of a line - two intercepts

- To find the equation of a line, the two axis intercepts can be used.
- The graph of the function x + y = 1 can be transformed through dilations & reflections.

Perpendicular lines

Two lines are perpendicular if they cross at a 90° angle.

Two lines are perpendicular if their gradients multiply to -1.

$$m_1 \times m_2 = -1$$
 $m_2 = -\frac{1}{m_1}$

Distance between points

The distance between two points can be found using Pythagoras' theorem:

Midpoint of a segment

The midpoint of a straight line segment is at the middle of the x & y values.

