

Linear Graphs

- Gradient of lines
- Graphing linear equations
- Finding the equation of a line
- Perpendicular lines
- Distance between points
- Midpoint of a line

Gradient of lines

The gradient is the measure of how far up a line rises, as it it runs across.

Gradient of 4/8:
Same as 1/2.

$$
\text { gradient }=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { gradient }=\frac{6-2}{10-2}=\frac{4}{8}=\frac{1}{2}
$$

Positive gradient
Negative gradient

Angles \& gradients

The gradient of the line can be used to find the angle between the line and the axis.

$$
\text { gradient }=\frac{\text { rise }}{\text { run }}=\frac{\text { opposite }}{\text { adjacent }}=\tan \theta
$$

$$
\begin{aligned}
& \tan \theta=\frac{3}{7} \\
& \theta=\tan ^{-1}\left(\frac{3}{7}\right) \\
& \theta \approx 23.2^{\circ}
\end{aligned}
$$

- Negative gradient: use a negative angle (Clockwise, below the axis) or the supplementary angle $\left(180^{\circ}-\theta\right)$

Angles \& gradients

Find the acute angle between the two lines:

$$
\begin{align*}
& y=\frac{-2 x}{3}+10 \\
& m=-\frac{2}{3} \\
& \theta=\tan ^{-1}\left(\frac{-2}{3}\right) \\
& \theta=-33.69^{\circ} \\
& \theta=146.31^{\circ}
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
y=3 x+2 \\
m=3
\end{array} \\
& \theta=71.57^{\circ}
\end{aligned} \quad \begin{aligned}
& \theta_{3}=180^{\circ}-33.69^{\circ}-71.57^{\circ} \\
& \theta_{3}=74.74^{\circ} \tag{3}\\
& \theta_{3}=146.31^{\circ}-71.57^{\circ} \\
& \theta_{3}=74.74^{\circ} \\
& \theta=\tan ^{-1}\left(m_{1}\right)-\tan ^{-1}\left(m_{2}\right) \\
& (\text { Use positive angles) }
\end{align*}
$$

Graphing equations - gradient form

Linear equations are defined by a gradient and y-intercept

$$
y=\varlimsup_{m=g r a d i e n t}^{m x}+c \longleftarrow c=y \text { intercept }
$$

$$
y=\frac{x}{4}+2
$$

$$
x=4
$$

$(0,2)$

$$
y=\frac{4}{4}+2=3
$$

y	-								
			(4,3)						
			1						
			Rise	$e=1$					
	Run $=$	4							

Graphing equations - intercept form

- Linear equations can also be written in an intercept form.

$$
\frac{x}{a}+\frac{y}{b}=1 \quad b x+a y=a b
$$

- The gradient form $(y=m x+c)$ can be rearranged.
$y=\frac{x}{2}-4 \rightarrow 4=\frac{x}{2}-y \rightarrow \frac{x}{8}-\frac{y}{4}=1 \rightarrow x-2 y=8$
x intercept: $y=0 \quad y$ intercept: $x=0$

$$
\begin{array}{ll}
x-2 y=8 & 0-2 y=8 \\
x-2 \times 0=8 & y=\frac{8}{-2} \\
x=8 & y=-4
\end{array}
$$

Finding the equation of a line - two points

- To find the equation of a line, a point and a gradient are needed.
- If two points are given, the gradient must be found first.
- The rule $y-y_{1}=m\left(x-x_{1}\right)$ is used to find the linear equation.

Gradient:

$$
m=\frac{-2-2}{9-1}=\frac{-4}{8}=-\frac{1}{2}
$$

Equation:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-\frac{1}{2}(x-1) \\
y-2 & =-\frac{1}{2} x+\frac{1}{2}
\end{aligned}
$$

$$
y=-\frac{1}{2} x+\left(\frac{1}{2}+2\right)
$$

$$
y=-\frac{1}{2} x+\left(\frac{1}{2}+\frac{4}{2}\right)
$$

Finding the equation of a line - two intercepts

- To find the equation of a line, the two axis intercepts can be used.
- The graph of the function $x+y=1$ can be transformed through dilations \&reflections.

$$
3 x+2 y=6
$$

Perpendicular lines

Two lines are perpendicular if they cross at a 90° angle.

Gradient of -4/1:

Gradient of 1/4:

Two lines are perpendicular if their gradients multiply to - 1 .

$$
m_{1} \times m_{2}=-1 \quad m_{2}=-\frac{1}{m_{1}}
$$

Distance between points

The distance between two points can be found using Pythagoras' theorem:

$$
d^{2}=6^{2}+3^{2}
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
d^{2}=36+9
$$

$$
d^{2}=45
$$

$$
d=\sqrt{45}=6.7
$$

Midpoint of a segment

The midpoint of a straight line segment is at the middle of the $x \& y$ values.

x value:

$$
x_{m}=\frac{x_{1}+x_{2}}{2}
$$

$$
x_{m}=\frac{2+10}{2}=\frac{12}{2}=6
$$

$$
y_{m}=\frac{-2+4}{2}=\frac{2}{2}=1
$$

