

Continuous probability distributions

- Probability density functions
- Calculating probabilities
- Median value
- Mean value
- Variance
- Cumulative probability distributions

Probability density functions

- Continuous variables (such as measurements of time, length etc) can be described by probability density functions.
- The chance of a measurement between two values (a \& b) for a probability density function $p(x)$ is represented by the area under the graph:

Probability density functions

- For a function $p(x)$ to describe a probability density function:
- $p(x)$ is continuous function within the domain of the possible values of x.
- The area under the curve between the lowest \& highest possible values of x is exactly 1.
- All values of $p(x)$ are positive or zero; not negative.
- Most probability density functions are described by a hybrid of two or more functions over the domain of R.

Calculating probabilities

- Find the probability that is x is between 2 and 3 .

Calculating probabilities

$$
\begin{aligned}
& \operatorname{Pr}(a<x<b)=\int_{a}^{b} p(x) d x \quad p(x)=-\frac{3}{32}(x-1)(x-5) \\
& \operatorname{Pr}(2<x<3)=\int_{2}^{3}-\frac{3}{32}(x-1)(x-5) d x \\
& \operatorname{Pr}(2<x<3)=\int_{2}^{3}-\frac{3}{32}\left(x^{2}-6 x+5\right) d x \\
& \operatorname{Pr}(2<x<3)=-\frac{3}{32}\left[\frac{x^{3}}{3}-3 x^{2}+5 x\right]_{2}^{3} \\
& \operatorname{Pr}(2<x<3)=-\frac{3}{32}\left[\left(\frac{(3)^{3}}{3}-3(3)^{2}+5(3)\right)-\left(\frac{(2)^{3}}{3}-3(2)^{2}+5(2)\right)\right] \\
& \operatorname{Pr}(2<x<3)=-\frac{3}{32}\left(9-27+15-\frac{8}{3}+12-10\right)=\frac{11}{32} \approx 0.344
\end{aligned}
$$

Median value

- The median value (M) of a continuous probability distribution $p(x)$ is the value of x which is the centre of the area under the graph of $p(x)$.

Calculating median value

$$
\begin{array}{ll}
\frac{1}{2}=\int_{-\infty}^{m} p(x) d x \quad p(x)=5 e^{-5 x}, x \geq 0 & \log _{e}\left(\frac{1}{2}\right)=-5 m \\
\frac{1}{2}=\int_{0}^{m} 5 e^{-5 x} d x & -\log _{e}\left(\frac{1}{2}\right)=5 m \\
\frac{1}{2}=\left[-e^{-5 x}\right]_{0}^{m} & \log _{e}(2)=5 m \\
\frac{1}{2}=-e^{-5 m}--e^{0} & m=\frac{\log _{e}(2)}{5} \\
\frac{1}{2}=-e^{-5 m}+1 & m \approx 0.138 \\
-\frac{1}{2}=-e^{-5 m} & \begin{array}{c}
\text { Half the time there is less than } \\
0.138 \text { hours }(8.3 \text { minutes }) \\
\text { between calls. }
\end{array} \\
\frac{1}{2}=e^{-5 m} &
\end{array}
$$

Mean value

- The mean value of a discrete probability distribution is found by adding together the products of values and probabilities.
- For a continuous distribution, this is calculated by integrating the product of x and $p(x)$.
$E(X)=\sum x \operatorname{Pr}(X=x)$
Discrete distribution

$$
\text { Mean }=E(x): \int_{-\infty}^{\infty} x p(x) d x
$$

Continuous distribution

Calculating mean value

Calculating mean value

$$
\text { Mean }=E(x): \int_{-\infty}^{\infty} x p(x) d x \quad p(x)=5 e^{-5 x}, x \geq 0
$$

$$
E(X): \int_{0}^{\infty} x 5 e^{-5 x} d x \text { Not part of the Maths Methods course! }_{\text {(But it can be solved on a CAS calculator.) }}
$$

$$
E(X)=0.20
$$

Variance

- The variance of a probability distribution is the expected value of the difference between x values and the mean.
- It can also be calculated from the subtracting the square of the expected value of X from the expected value of the squares of X.
- The standard deviation is the most commonly used measure of spread.
- A normally distributed probably density function has 68% of outcomes within one standard deviation of the mean and 95% within $t w o$.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X-\mu^{2}\right) \\
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
\end{gathered}
$$

Standard deviation $(X)=\sqrt{\operatorname{Var}(x)}$

Calculating variance

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \\
& E(X)=0.20
\end{aligned}
$$

$$
p(x)=\left\{\begin{array}{l}
5 e^{-5 x}, x \geq 0 \\
0, x<0
\end{array}\right.
$$

$$
E(X)^{2}=0.04
$$

$$
E\left(x^{2}\right)=\int_{0}^{\infty} x^{2} 5 e^{-5 x} d x
$$

$$
E\left(x^{2}\right)=0.08
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

$\operatorname{Var}(X)=0.08-0.04$
$\operatorname{Var}(X)=0.04$
Standard deviation $(X)=\sqrt{0.04}=0.2$

Calculating variance

Cumulative probability distributions

- The cumulative probability distribution $c(x)$ is found by integrating $p(x)$.
- Probabilities are read from the vertical axis.
- Quartile values can be read from the horizontal axis.

